Resolution Number: AC/II(23-24).2.RUS7

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to Mumbai University)

Syllabus for UG Program: S.Y.B.Sc. (Major) Life Science

Program Code: RUSLSc

(As per the guidelines of National Education Policy 2020

For Academic year 2024-25)

(Choice based Credit System)

Course Code: RUSLSc.O201 Course Title: Physiological Systems in Plants and Animals-I

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Students will understand as to how the physiological systems in the human body attain homeostasis.
CO 2	Explain the Central nervous system(CNS) and peripheral nervous system (PNS). Understand the concept of action potential and resting membrane potential in Nerve Impulse. Explain the role of synapse in nerve impulse.
CO 3	Understand and compare different plant movements. To find its role in plant growth by designing an experiment to observe different plant movements
CO 4	Explain the Behaviour studies in animals with suitable examples. Compare between innate and learned behaviour. Elaborate on physiological aspects such as fat accumulation and thermoregulation during migration in animals
CO 5	Explain alternation of generation in plants. Elaborate on the role of environmental factors in sex determination in animals. Discuss the importance of plant and animal interaction sex determination. Basis of sex determination in plants and animals.
CO 6	Discuss physiology and explain the importance of hormones in menstrual cycle, pregnancy, parturition and menopause.
CO 7	Explain the importance of different types of ovules in plants. Compare microsporogenesis and megasporogenesis.

Course Code: RUSLSc.O202

Course Title: Biochemical Approach to Life Processes in Plants and Animals-I

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION	
	Students will gain insights about following;	
CO1	To classify enzymes, specificity reactions of enzymes,	
CO2	To explain models of enzyme action, enzyme kinetics and inhibition reactions, allostery, isoenzymes.	
CO3	To propose a strategy to isolate and purify enzymes, compare different techniques of purification.	
CO4	To explain the applications of enzymes in industry and medicine.	
C05	To describe the pathways of catabolism of carbohydrates, proteins and lipids and to evaluate bioenergetics in catabolism of carbohydrates and lipids.	
CO6	To correlate and integrate metabolism of all biomolecules into the TCA cycle, and then the electron transport chain and thus summarize the sequences involved in cellular respiration and energy generation.	

DETAILED SYLLABUS

Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
		S.Y.BSc. LIFE SCIENCE (Theory)	Lectures
RUSLSc.O3 01		Physiological Systems in Plants and Animals-I	3 Credits Total 45 lectures
	Ι	Role of Hormone and HomeostaticMechanisms in Animals and PlantsControl systems in homeostasis and componentsof homeostatic control.Cell signalling in the nervous system andendocrine system [eg. Amines (catecholamine orthyroid hormones)] –Regulation of cell signalling: 1 st , 2 nd and 3 rd orderUp and Down RegulationHormones of Pineal, Hypothalamus, Pituitary,Thyroid, Parathyroid, Pancreas, Adrenal gland,Testis and Ovary.Plant Hormone- Auxins, Gibberellic acid,	15 Lectures
	Π	Cytokinin, Abscisic acid, Ethylene. Introduction to Nervous System, Animal And Plant Movements and Behaviour	15 Lectures
Ram	212	 Human Nervous System – CNS and PNS overview. Types of cells: Neuronal, Glial cells Role of meninges and CSF Nature of the Nerve Impulse – Resting potential and Action Potential. Introduction to types of Synapses and Nerve impulses. Behaviour in animals ; Migration in animals.: Physiological aspect (Fat accumulation and thermoregulation). Plant movements – Tropisms, Nasties – overview and its molecular aspects with suitable examples 	
	Ш	 Developmental Biology in Plants and Animals 1. Basis of Sex Determination. (a) Plants: Maize (b) Animals: Role of SRY gene and Aromatase (c) Role of environmental factors – Temperature and Parthenogenesis in 	15 Lectures

	insects Eg. Wasp/Hone (d) Plant-animal interact Fig wasp / Gall wasp (e) Sex reversal Alternation of generations <i>Adiantum</i> . Ovarian and testicular func- regulation of uterine chang menopause, pregnancy, pa Artificial regulation of rep- contraceptive methods. 1. Development of embryoo dicot plants.	in plants Eg. ctions, puberty and ges in menstrual cycle, rturition, lactation. roduction: Use of
RUSLSc. O302	Biochemical Approach in Plants and A	
	I Enzymology Strategies for Isolation and p enzymes, measurement of sp purification fold. Classificat an example of each). Effect Temperature. Coenzymes and cofactors : I Zn and Cu (one example eac Kinetics (Michealis Menten plots). Enzyme Inhibitors, A back inhibition. Allosteric e Glycolysis) and their signifi regulation. Concept of Isoenzymes: LD	pecific activity and tion of enzymes (With of pH and NAD, FAD, Mn, Mg, ch). , Lineweaver Burk Activators and feed- nzymes (Kinases in cance in metabolic H.
Raun	 II Carbohydrate Metabolism Carbohydrate Metabolism: a) Glycolysis – Process and b) Pentose Phosphate Pathw c) Citric Acid Cycle: Process Importance as a central amp Electron Transport System: Sequence of electron transpondiative Phosphorylation: Chemiosmotic Hypothesis, Control of respiration, uncompoisons. 	and Bioenergetics. 15 Lectures d metabolic regulation vay ss and regulation, whibolic pathway. Localisation and orters. Mitchell's ATP synthesis,

	III	Lipids and Proteins Metabolism.	15
		Lipids - Catabolism : Lipolysis, Role of Carnitine in mitochondrial permeability, Beta– Oxidation of fatty acids and integration into Kreb's cycle, Ketone bodies and their significance. Amino Acids – Catabolism: Protein Degradation liberating amino-acids', Deamination, Transamination & ammonia disposal by Urea cycle, Decarboxylation & integration into Kreb's cycle.	Lectures
		PRACTICALS	2 Credits/ Total 30 lectures
RUSLScP. O301	I	 Practicals in Physiological Systems in Plants and Animals-I 1. Good Laboratory Practices. 2. Demonstration of reproductive system and location of endocrine glands in Albino Mouse Male and Female (Virtual Lab). 3. Microtome and preparation of Endocrine gland slides from above dissected specimen or any suitable plant specimen. 4. Study of Histological features of Endocrine glands. 5. A complete study of Frog Embryology (Egg to Tadpole to Adult). 6. Study of Floral parts from the given flower accessory to essential whorls hibiscus ,vinca, canna, monocot. 7. Detection of activity of plant hormones (Dose dependent response). 	
RUSLScP.O 301	П	Practicals in Biochemical Approach to Life Processes in Plants and Animals- I 1.A. Instrumentation / Technique	
		 pH metry Colorimetry Titration. B- Process / Concept and immediate Relevance. Extraction, Purification Analysis / Estimation 	

TT		1
	- GLP(Good Laboratory practices) incorporated	
	into every practical	
	Acid, bases and buffers.	
	2. pH meter -	
	a) Principle & instrumentation and	
	b) Determination of pH (titration of	
	Acids/Bases/Buffers/ 'chameleon balls').	
	(in FY the students were introduced to the	
	concept of pH measurement of familiar liquids-	
	here tech & details are given-practically	. 0.
	understanding buffering using Glycine / titration	
	curve).	022
	c) Phosphate buffer preparation using	
		•
	Henderson Hasselbalch equation	
	d) Glycine titration	
	3.Protein precipitation by pH manipulation	
	(Casein from Milk/ Curds)	
	(From previous experiments and pH	
	manipulation, proteins can be precipitated).	
	4.Study of Enzyme activity and Kinetics:	
	Determination of K_M of an enzyme. Urease (from	
	Jack beans) /Lipase/Protease/ (from seeds/	
	detergents) / amylase source (Enzyme activity can	
	be detected and estimated - using colorimetry).	
	5. Histochemical localization of Enzymes (Acid	
	Phosphatase) (Enzyme activity can be localized).	
	6.Estimation / Quantitation :	
	Colorimetric Protein Estimation by Biuret	
	Method. (Enzyme extract / Casein from previous	
•	expts)	
	(Proteins, such as the isolate from experiment 2	
	can be estimated by colour reaction).	
	7.Colorimetric Cholesterol Estimation / total	
	Lipid Estimation from egg. (Lipid metabolism is	
	an important component of our systems, content	
	can be estimated by colour reaction).	
0'0'	8.Titrimetric estimation of Ascorbic acid (Vit C).	
	<i>(Estimation of biological materials by non-</i>	
	colorimetric method)	
		1

References

RUSLSc.O201

1.	Plant physiology Taiz and Zeiger (5th edition) (2010) Pub : Sinauer Associates.	
2.	Essential Developmental Biology J.M. W. Slack (2nd edition) (2006) Pub: Blackwell Publishers	
3.	Developmental Biology Scott Gilbert (9th edition) (2010) Sinauer Associates	
4	Fundamentals of physiology - A Human perspective L Sherwood 5th edition (2006) Pub : Thomson Brooks	
5	Embryology of Angiosperms	
	Bhojwani and Bhatnagar 4th edition (1999) New Delhi Vikas	
6	Vander's Human Physiology Widmaier, Raff, Strand (10th edition,) (2006) McGraw Hill Int. Edition.	
7	Principles of Animal Physiology C Moyes and Schulte 2nd edition (2007) Pearson Education.	
8	Medical Microbiology: A guide to microbial infections . Greenwood, Slack, Peutherer and Barer 17th Ed (2007) Churchill Livingstone	
9	Microbiology Davis, Dulbecco and Ginsberg. (1990), Lippincott Company, Phi	
10	Textbook of Microbiology. Ananthanarayanan and Panniker 5th Edition (1996). Orient Longman.	
	RUSLSc.O302	
1	1. Lehninger's Principles of Biochemistry Eds : D.L Nelson and M.M. Cox, Pub : WH Freeman Publishers, New York. 4th edition (2005)	
2	Biochemistry Eds : J.M. Berg, J L Tymencko and L. Stryer Pub : W H Freeman and co., New York. 5th edition (2002)	
3	Fundamentals of Biochemistry by Eds : D.Voet , J. G. Voet Pub : John Wiley &Co., New York Pratt 1st ed (2004)	
4	Principles of Biochemistry Ed: Lehninger.A Pub: CBS Publishers and Distributors, 2nd Edition (1993)	

5	Principles of Biochemistry Eds: Zubay G.L, Parson W.W. and Vance D.E. Pub: W. C. Brown, First Edition (1995)
6	An Introduction to Genetic Analysis Ed: Griffiths A.J. et al, Pub: W. H. Freeman London) Seventh Edition(2000)
L	011805
	onos
	NJIOI.
	RUIA
	a call
	annarain
8	

Modality of Assessment Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Mar ks
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

External Examination- 60%- 60 Marks B)

	B) External Exa Theory question paper Paper Pattern:	mination- 60%- 60 Marks pattern:	2	
Q.	Options	*OLO	Marks	Based on
Q1	Answer any 2 question	ns out of 3 questions	16	Unit I
Q2	Answer any 2 question	ns out of 3 questions	16	Unit II
Q3	Answer any 2 question	ns out of 3 questions	16	Unit III
Q4	Short notes on topics of 5;	of all 3 units; Answer any 3 out	12	Unit I, II, III
	2	Total	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	Marks]
Journal	05	
Experimental tasks	15	
Total	20	3
Examination: 60%- 60	Marks	-011895
End Practical Examination	tion:	5

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Marks
Main question to perform Experimental	20
task/Estimation/ dissection/Bioinformatics	
statistical analysis project work	
Identifications	10
Total	30

Overall Examination & Marks Distribution Pattern

Semester III

Course		0		02 ³			Gra nd Tot al
	Inte rnal	Exte rnal	T ot al	Inte rnal	Exte rnal	T ot al	
Theory	40	60	10 0	40	60	1 0 0	200
Practic als	20	30	50	20	30	5 0	100

Course Code: RUSLSc.E211 Course Title: Physiological Systems in Plants and Animals-II Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION	
	Students will gain insights about following;	
CO 1 Adaptive mechanism in plant and animal to extreme environmental condition		
CO 2	Regulation of energy stores and various eating disorders.	
CO 3	To describe defense mechanisms in plants and animals.	
CO4 To differentiate between innate and adaptive immunity and describe them.		
CO 4	Explain epidemiology, aetiology, pathology, diagnosis, therapy and preventive measures and vaccines for different diseases	

Rawwall

Course Code: RUSLSc.E212 Course Title: Biochemical Approach to Life Processes in Plants and Animals-II Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	To explain the anabolic pathways in carbohydrate, lipids and proteins
CO 2	To compare non- cylclic and cyclic photosynthetic pathways. To justify how photorespiration is a wasteful process and to review how C4 plants circumvent it.
CO 3	Understand the role of different enzymes in replication of DNA. Compare between the prokaryotic and eukaryotic replication process.
CO 4	Explain the transcription and translation process in prokaryotes and regulation of gene expression in prokaryotes.
CO 5	Compare transcription and translation process in eukaryotes. Understand the concept of post translational modifications in eukaryotes
e suuus	

DETAILED SYLLABUS

Course Code/ Unit	Uni t	Course/ Unit Title	Credits/ Lectures
		S.Y.BSc. LIFE SCIENCE (Theory)	
RUSLSc.E 211		Physiological Systems in Plants and Animals-II	2 Credits Total 45 lectures
	Ι	Adaptive Mechanisms to Environmental ChangesAdaptations in plants to extreme thermal conditions.Adaptations in animals to extreme thermal conditions.Fever, Hyperthermia, heat exhaustion and heat stroke.Thermogenesis: shivering and nonshivering thermogenesis, Hyperthermia induced by pyrogens.Regulation of energy stores: control of food intake, Role of Leptin, Ghrelin and Kisspeptin.Eating disorders: Anorexia and Bulimia Nervosa, Obesity, Diabetes.	15 Lectures
Rau	II	 Homeostasis during infections Innate Immunity and Adaptive Immunity. Mechanisms of Innate Immunity – In invertebrates (hemocytes) and in Vertebrates. (Physical and Physiological barriers, Phagocytosis and inflammation). Mechanisms of adaptive immunity-T and B cells. (Mode of Recognition of Antigens). Virulence factors and toxins: virulence factors, exotoxins, enterotoxins, endotoxins. Host factors in infection: host risk factors, innate resistance. Biomolecules such as secondary metabolites, surface protectants and enzymes in plants. Parasite escape mechanisms in infection. 	15 Lectures
	III	Diseases in plants and animals (with respect to epidemiology, aetiology, pathology, diagnosis, therapy, preventive measures and vaccines giving the current status)	15 Lectures

		1
	Vector borne Diseases– Malaria, Dengue or	
	Chikungunya.	
	Viral Disease-AIDS, Herpes, CoronaVirus.	
	Bacterial Diseases- Tuberculosis or Typhoid,	
	Leprosy	
	Fungal Diseases- Ringworm or Candidiasis,	
	Psoriasis.	
	Helminthic Diseases– Filariasis.	
	Diseases in Plants: Tobacco Mosaic Virus,	
		0.
	Crown gall bacterial infection, Puccinia fungal	
DUCLC	infection with crops.	
RUSLSc	Biochemical Approach to Life Processes in	2 Credits
.E212	Plants and Animals- II	Total 45
		lectures
	I Anabolism of Biomolecules	15 Lectures
	S	
	Anabolism of Carbohydrates:	
	a) Gluconeogenesis	
	b) Glycogen synthesis	
	Anabolism of Lipids:	
	a) Fatty acid biosynthesis	
	b) Cholesterol and prostaglandin biosynthesis.	
	Anabolism of Amino acids:	
	a) Transamination and its significance	
	b) Glutamine synthesis	
	Synthesis of purines & pyrimidines with	
	Significance.	
	Photosynthesis, Light reaction and Calvin cycle	
	Photorespiration in plants: C3 and C4 plants	
	II Molecular Biology studies in prokaryotes	15 Lectures
	DNA replication in prokaryotes.	
	Transcription in Prokaryotes	
	Translation in prokaryotes	
	Regulation of gene expression and its	
	significance:	
	Operon model (Lactose / Tryptophan)	
	III Molecular Biology studies in eukaryotes	15 Lectures
	DNA Replication in Eukaryotes	
	Transcription in Eukaryotes and Post	
	Transcriptional modifications	
	Translation in Eukaryotes and post translational	
	modification	
	PRACTICALS	2 Credits

		30 Lectures
RUSLSc	Practicals in Physiological Systems in Plants	
P.E211	and Animals-II	
1,12211		
	1.Extraction and detection of Plant alkaloids,	
	saponines, tannins and volatile oils.	
	2.Alkaloid separation by TLC.	
	3.ABO Blood typing.	
	4.Total RBC count using a Hemocytometer.	~0
	- · ·	
	5.Principle and working on home pregnancy test	
	slide / Widal Test- Qualitative.	
	6.Streak plating (T, Pentagon and Quadrant – Any	
	2) to isolate microorganisms from a mixed culture	
	using differential media.	
	7.Antibiotic sensitivity of microorganisms (Plant	
	extract, Tetracycline/ Gentamicin).	
	8.Study the effect of tobacco extract or caffeine or	
	any other plant extract on heart beat of Daphnia.	
RUSLSc	Practicals in Biochemical Approach to Life	
P.E211	Processes in Plants and Animals- II. :	
	A. Instrumentation / Technique (I / T) (1) PAGE	
	(Demonstration).	
	Chromatography – Paper, Thin layer, Column.	
	B. Process / Concept and immediate Relevance (C	
	and R)	
	- Extraction, Purification	
	- Analysis / Estimation	
	GLP(Good Laboratory practices) incorporated	
	into every practical Separation / Extraction	
	techniques	
	1.Extraction and Detection of RNA/Ribose	
	Sugars. C, T (Extraction of nucleic acid and	
	detection by colour reaction)	
	2.Chromatography of Sugars – Circular Paper C,	
0'0'	Τ	
	(Separation of carbohydrates and detection by	
	<i>colour reaction)</i>	
	3. Thin Layer Chromatography for separation of	
	Plant Pigments.(Slide technique) C,T,R	
	(Separation techniques for charged, uncharged	
	<i>materials based on solvent partition)</i>	
	4.Solvent Extraction of Lipids. C, T, R	
	<i>(Extraction of lipid and proportional estimation</i>	
	by weight)	

5.Column Chromatography of Proteins / Pigments. I, C, T(Separation technique for	
proteins/ other materials based on charge/size)	
6.Protein separation by PAGE (Demonstration) I,	
C	
(Separation techniques for charged materials	
based on electrophoretic mobility)	
7.Interpretation of pathological reports based on	
biochemical analysis.	

	RUSLSc.E211
1.	Plant physiology Taiz and Zeiger (5th edition) (2010) Pub : Sinauer Associates.
2.	Essential Developmental Biology J.M. W. Slack (2nd edition) (2006) Pub: Blackwell Publishers
3.	Developmental Biology Scott Gilbert (9th edition) (2010) Sinauer Associates
4	Fundamentals of physiology - A Human perspective L Sherwood 5th edition (2006) Pub : Thomson Brooks
5	Embryology of Angiosperms
	Bhojwani and Bhatnagar 4th edition (1999) New Delhi Vikas Pub
6	Vander's Human Physiology
	Widmaier, Raff, Strand (10th edition,) (2006) McGraw Hill Int. Edition.
7	Principles of Animal Physiology
23	C Moyes and Schulte 2nd edition (2007) Pearson Education.
8	Medical Microbiology: A guide to microbial infections . Greenwood, Slack, Peutherer and Barer 17th Ed (2007) Churchill Livingstone
9	Microbiology
	Davis, Dulbecco and Ginsberg. (1990), Lippincott Company, Phi
10	Textbook of Microbiology.

1	1. Lehninger's Principles of Biochemistry Eds : D.L Nelson
	and M.M. Cox, Pub : WH Freeman Publishers, New York. 4th edition (2005)
2	Biochemistry Eds : J.M. Berg, J L Tymencko and L. Stryer
	Pub : W H Freeman and co., New York. 5th edition (2002)
3	Fundamentals of Biochemistry by Eds : D.Voet , J. G. Voet Pub : John Wiley &Co., New York Pratt 1st ed (2004)
4	Principles ofbiochemistry Ed: Lehninger.A Pub: CBS Publishers and Distributors, 2nd Edition (1993)
5	Principles of Biochemistry Eds: Zubay G.L, Parson W.W. and Vance D.E. Pub: W. C. Brown, First Edition (1995)
6	An Introduction to Genetic Analysis Ed: Griffiths A.J. et al, Pub: W. H. Freeman (London) Seventh Edition (2000)

Modality of Assessment Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Mar
		ks
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

B) External Examination- 60%- 60 Marks

В	B) External Examination Theory question paper pa Paper Pattern:		2.	
Q.	Options	*000.	Marks	Based on
Q1	Answer any 2 questions	out of 3 questions	16	Unit I
Q2	Answer any 2 questions out of 3 questions		16	Unit II
Q3	Answer any 2 questions	out of 3 questions	16	Unit III
Q4	Short notes on topics of of 5;	all 3 units; Answer any 3 out	12	Unit I, II, III
		Total	60	

Practical Examination Pattern:

C) Internal Examination: 40%-40 Marks

Particulars	Marks	
Journal	05	
Experimental tasks	15	
Total	20	
Examination: 60%- 60 Ma		Colleg

D) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Marks
Main question to perform Experimental	20
task/Estimation/ dissection/Bioinformatics	
statistical analysis project work	
Identifications	10
Total	30

Overall Examination & Marks Distribution Pattern

Semester IV

	Course	30			02 3			Gra nd Tot al
	n d	Inte rnal	Exte rnal	T ot al	Inte rnal	Exte rnal	T ot al	
2	Theory	40	60	10 0	40	60	1 0 0	200
	Practical s	20	30	50	20	30	5 0	100
